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Spinodal Decomposition and Nucleation 
in the Presence of Flow I 

A. O n u k i  2 

Spinodal decomposition and nucleation of critical fluids are discussed in the 
presence of laminar shear and turbulence on the basis of recent experiments. In 
such situations we can realize stationary emulsion-like domain structures due to 
dynamical balance between thermodynamic instability and shear-induced defor- 
mations. In the spinodal decomposition case, unique is the strong shear regime 
in which the shear exceeds the average relaxation rate of the order parameter. 
In the nucleation case shear can enhance aggregation of droplets, thus speeding 
up the growth. But if the shear exceeds a relatively small critical value, even 
critical droplets can be broken, then leading to complete suppression of the 
droplet formation. We also predict a considerable increase of the effective 
viscosity and a large non-Newtonian effect due to domains in the course of 
spinodal decomposition. 

KEY WORDS: fluid binary mixtures; light scattering; nucleation; shear flow; 
spinodal decomposition; viscosity. 

1. I N T R O D U C T I O N  

Fluid  b inary  mixtures near  the critical poin t  are very suitable systems to 

investigate a variety of nonequ i l ib r ium effects both experimental ly and  

theoretically. In  equi l ibr ium we find strong fluctuations in composi t ion  
characterized by a semimacroscopic correlat ion length ~ and a semi- 
macroscopic average lifetime t~=~2/D~ (oc 43 in fluids). As a result the 

near-equi l ibr ium behavior  can be described on approaching the critical 
poin t  in universal  manners  independent ly  of details of fluids [1, 2-1. O n  the 

other hand,  there can be a n u m b e r  of nontrivial ,  nonequ i l ib r ium si tuations 
realizable in critical fluids, a l though kwell-studied examples are still limited. 

i Invited paper presented at the Tenth Symposium on Thermophysical Properties, June 20-23, 
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Most of such previous papers have been directed to the phase separa- 
tion phenomena proceeding either by spinodal decomposition or by 
nucleation [3-7] .  If a binary mixture is quenched at the critical composi- 
tion c=cc  into the unstable region T <  To, the spinodal decomposition 
occurs and the characteristic size R(t)  of emerging domains evolves as 
R(t)  ~ t ~ where t is the time after quenching. In an early stage ~b ~ �89 (diffu- 
sion regime) and then ~b,-~ 1 for t >  100tr (capillary regime) as adequately 
explained by theories [6, 7]. However, there still remain many interesting 
open problems even here if the viewpoint is shifted. (i) No sufficient under- 
standing has been obtained for the coarsening in a very late stage which 
starts with the onset of a gravity-induced convection (gravity regime) 
despite some remarkable observations [8]. ( i i )Furukawa also examined 
another type of a very late stage in which domain sizes are so large that 
Reynolds numbers within characteristic domains exceed 1 and inertia 
effects are important (inertia regime) [9].  It should be relevant to density- 
matched fluid mixtures [-10] and fluids not close to the critical point. 
(iii) We should also mention a very intriguing phase transition in a fluid 
mixture periodically driven through its critical point [ 11 ]. In experiments 
~ - T - T c ( p )  was oscillated around an average ( 8 )  by changing the 
pressure in a step-wise manner 1-12]. If ( e )  was larger than a critical value 
8~ (which was found to be positive), no macroscopic phase separation 
occurred and the system remained in a disordered phase state however 
long the observation time was. There, the scattered light intensity I k 
behaved as k - 2 5  and was nearly stationary within each period at small 
wave numbers. In this disordered state, fluctuations are stronger than if the 
system were in equilibrium and at the critical point. It should also be 
remarked that the spatial correlation function has an anomalous long tail 
r -~ at a large distance r. I believe that this disordered state deserves 
further scrutiny because of its unusual nature. 3 On the other hand, for 
e<ec ,  the phase separation proceeded, resulting in a macroscopic two- 
phase state, but it could be dramatically slowed down. Furthermore, as a 
surprising finding, the process depended on the control parameter 8~-  ( 8 )  
in a mean field fashion. 

Another well-studied case is that of critical fluids in the one-phase 
region subjected to shear flow [14-16]. Here most of the critical fluctua- 
tions can be elongated along the flow before being dissipated thermally in 
the case Str > 1, S being the shear rate, as evidenced by anisotropic light 

3 It would be exciting if we could make T -  Tc oscillate around zero by injecting relatively 
strong ultrasounds into systems near their second-order phase transition [13]. Then we 
could expect strong fluctuation enhancement due to periodic domain formation. This 
proposed experiment should be suitable even for systems with rapid time scales of the order 
parameter. 



Spinodal Decomposition and Nucleation 295 

scattering [14]. Note that any spatial inhomogeneities are distorted by 
shear on the time scale of 1IS and this time can be easily made shorter than 
the thermal relaxation time t~. Once we have St~ > 1, the structure of the 
fluctuations is greatly different from that near equilibrium; the correlation 
range and the average lifetime are very anisotropic and no longer given by 

and t~, leading to unique nonequilibrium critical phenomena. 
In this paper we focus our attention on effects of flow field (laminar 

shear flow or turbulence) on domains emerging in a phase-separating fluid 
brought into the unstable or metastable region. The effects are much more 
drastic than in the one-phase region. In Section 2 we examine spinodal 
decomposition in laminar shear, and in Section 3, spinodal decomposition 
in turbulence. Section 4 treats nucleation in flow. We are interested mainly 
in domain shapes and sizes in such flows, of which precise information can 
be obtained by light-scattering experiments. In Section 5 we consider a 
macroscopic rheological effect due to domains. 

2. SPINODAL DECOMPOSITION IN LAMINAR SHEAR 

2.1. Experiments So Far 

Deformation and breakup of isolated droplets in laminar shear 
have long been studied in various (but noncritical) fluids since Taylor's 
pioneering work [17, 18]. In polymer physics, effects of shear on phase 
separation should be of prime importance, but such studies are still at a 
very premature level. Silberberg and Kuhn mixed two incompatible 
polymer pairs in a common solvent by applying shear to observe elongated 
domains [19]. With increasing shear, they eventually encountered 
disappearance of domain scattering and called it "phase separation rever- 
sal." 

In a low molecular weight binary mixture quenched below T~, Beysens 
and Perrot realized a periodic spinodal decomposition by periodically 
tilting a capillary tube through which the fluid passed [20]. A spinodal 
ring appeared when the tube was horizontal and the shear was small. Then 
it changed into a sharp streak as the tilting angle was increased. This arose 
from elongation of domains. Examples of the scattering patterns are shown 
in Fig. 1. The intensity was much stronger than that in the one-phase 
region. 

Hashimoto's group has performed a shear flow experiment on a semi- 
dilute solution of polystyrene + polybutadiene + solvent [-21]. They have 
found that, even if the fluid is initially in the two-phase state, the interface 
is broken in pieces and the fluid becomes homogeneous on application of 
stationary shear. At high shear they have observed a stationary sharp 
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a b 
Fig. 1. Scattering patterns from a binary mixture of nitrobenzene + n-hexane at the critical 
composition below T0 by 3 mK [20]. Periodic shear is applied with the maximum 600 s -a 
and the tilting frequency 0.317 s 1 and flow is nearly horizontal. (a) At an instant of S = 0. 
(b) S~0. 

streak similar to the transient streak found by Beysens and Perrot. This 
result suggests that shear can stop the decomposition process, giving rise 
to anisotropic domain structures which are dynamically stationary as a 
result of the balance of the thermodynamic instability and the breakup 
mechanism by shear. Furthermore, they have studied shear-induced 
homogenization (the phase separation reversal in Silberberg's sense). 

Very recently, Chan et aL have studied spinodal decomposition under 
stationary shear in the low molecular weight case [22]. As their first work 
they have followed deformation of the spinodal ring under weak shear to 
find results similar to those of the polymer case [21]. However, some 
aspects seem to be essentialIy different. One of them is the role of the 
hydrodynamic interaction in the two cases. In the low molecular weight 
case, small-scale velocity fluctuations induced by concentration 
inhomogeneities give rise to the renormalization of the diffusion constant 
[6]  and the breakup and coagulation of domains [7].  In the polymer case, 
on the contrary, small-scale velocity fluctuations are strongly suppressed 
due to high viscosities [23]. As another difference, polymer systems show 
elastic behavior when polymer chains are deformed. 4 However, because the 

4 In polymer-solvent systems the elastic effects are much enhanced in the semidilute region, 
where a large shear-demixing effect was observed [24]. A theory for such effects will appear 
elsewhere. 
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study in the polymer case is still at the beginning, we consider only the low 
molecular weight case in the following [25, 26]. 

2.2. Weak Shear Case: Hydrodynamic Regime 

We assume that the temperature T is slightly below the critical value 
T c and the composition is at the critical value. Then there are two charac- 
teristic cases, St~ < 1 and St~ > 1. Here t~ = 6ntl~3/kB T is the characteristic 
time scale of the critical fluctuations, r/ being the shear viscosity and 
~ = ~ o ( 1 - T / T c )  ~ being the correlation length. In Fig. 2 we show 
schematically domain structures in these two cases in b and c, while in a 
the gravity effect is dominant and the interface is not broken. 

First let us consider the steady state in the very weak shear case 
St~ ~ 1. Domains will have sizes much greater than ~ and sharp interfaces. 
Let R• and RII be the characteristic domain sizes perpendicular and 
parallel to the flow. The gravity effect will be negligible if Rll is less than the 
capillary length (a/gAp) 1/2, where a is the surface tension and Ap is the 

F lo w  ----> 

b 

Flow - - )  

3~ C 

r~ 
i.< 

Fig. 2. Schematic domain structures of fluids in the two-phase region under gravity 
and shear flow. Shear is produced by a concentric rotating cylinder. (a) Gravity- 
dominated case. (b) Weak shear case. (c) Strong shear case. 
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mass-density difference between the two phases. The interface velocity is 
equal to the velocity field u(r, t) at the interface position. Here u(r, t) obeys 
the usual Navier-Stokes equation where the pressure is discontinuous 
across the interface by oK, x being the curvature. Neglecting the effect of 
inertia, we find [ 18 ] 

where the first term is the average flow, ex being the unit vector along the 
x axis, ~ da' is the surface integral over the interface position r', n(r') is the 
normal unit vector at the interface, and 7~(r) is the Oseen tensor (oc 1/r). 
The competition of the two terms in Eq. (1) should result in a stationary 
state. Hence, simple dimension analysis yields 

Ra ~ Rll ..~ a/qS (2) 

However, Chan et al. have found a sharp streak even for St~ ~ 1 [22]. This 
suggests that in the percolated case at the critical composition Rll can be 
considerably greater than R• even for St~ ~ 1, in contrast to the isolated 
droplet case [17, 18]. This point should be examined further in the future. 

On the basis of Eq. (2) the inertia term is estimated as p ( u . V ) u ~  
(ply2/t13S)(~V2u). Thus the Reynolds number Re is of order po'2/rl3S and 
Eq. (2) is valid only in the low-Reynolds number case, 

S > p~21t]3 or Str > pa~ltl 2 (3) 

As T--* To, we have (~r/gAp)l/2~tl2/p~r except for density-matched fluid 
mixtures [10]. Then the effect of inertia can be neglected (before the 
gravity effect becomes dominant), and Eq. (2) holds in the following shear 
region: 

1/v~ >> S > (ag Ap)I/2/rl (4) 

We call this regime the capillary regime in shear. Notice the close analogy 
of Eq. (2) and the growth law R ( t ) ~  (a/rl)t in the capillary regime in 
the normal spinodal decomposition case. For k < l / R l l  the scattered 
light intensity will be of the order given by Ik. . .(Ac)2RqlR 2 ~  
(T  c - - T )  2/~ (o/r/S) 3, where Ac is the concentration difference. On the other 
hand, in the gravity regime S < (ag 3p)l/z/rl, the fluid will tend to a macro- 
scopic two-phase state, although its details are unknown. 

At this point we should not overlook that many systems satisfy the 
reverse condition (a/g Ap)l/2>> ~12/pa far from To. For such cases there is a 
shear region in which Re > 1 and the gravity effect is negligible. Here 
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R ~  (ff/pS2) 1/3 by equating the capillary pressure aIR and the dynamic 
pressure p(gR) 2. The corresponding shear region is written as 

}0 - -  1 / 2 0 "  - -  1/4(g /t/0)3/4 < S < po'2/Y] 3 (5) 

This regime may be called the inertia regime in shear [9, 26]. 

2.3. Strong Shear Case: Nonhydrodynamic Regime 

The case St~ > 1 can be realized only in critical fluids and it can be 
rewritten at the critical composition as 

I T -  ToI/T~ < fs = (6~qo~S/kB T) ~/<3~) (6) 

For example, f~ ~ 10-5S ~ (S in s -*) for isobutyric acid + water, while it 
is much smaller for pure fluids as exemplified by f~ "~ 6 x 10-730.53 for 
xenon. Then we introduce a wave number k~ by 

(k,T/6rcq)k~=S or kc~=(Srr 1/3 (7) 

The fluctuations with wave numbers greater than k~ are denoted by SWF, 
and those with wave numbers smaller than k~ by LWF. The LWF are 
strongly elongated along the flow and their lifetime and the correlation 
length are no longer given by ~ and ~, while SWF are little affected by 
shear. A renormalization group theory [15] showed that a mean field 
theory can be used once SWF have been coarse-grained in the theory. The 
LWF are suppressed below the equilibrium level such that the nonlinear 
coupling among LWF can be taken into account by a normal perturbation 
scheme in three dimensions. 

In the disordered phase the fluctuation intensity I k = (]ckl 2) for LWF 
is roughly described by 

Ik ~ 1 / { A [ T -  re(S)] + ck~/5 IkxI2/~ + k 2 } (8) 

where A =~o2(~ )  2v ~/T~ and c ~  1. In Ref. 15 the critical temperature 
Tr was found to be slightly lower than the equilibrium value To(0). 
There, the shift AT= To(O)-T~(S) was calculated in the e = 4 - d  expan- 
sion scheme (where d is the spatial dimensionality): 

/ i v=  rc(0)-  re(S)= [0.0832~ + O(s2)l ~s re(0) (9) 

At d =  3 we expect AT/Tc~ ~'rs from the experiments [14]. 
On the other hand, if T is lowered below Tc(S ) under Eq. (6), the 

spinodal decomposition occurs leading to the anisotropic domain structure 
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shown in Fig. 2c. Equation (8) suggests that the spatial scale perpendicular 
to the flow (kx ~ 0) should initially be given by 1/~: with 

fs = ~O l(,~s)V--1/2 E ( T c ( S  ) _ T)/Tc]l/2 (10)  

In Ref. 26 I expected that the domain size R• perpendicular to the flow in 
the final steady state does not much exceed l/x, so that 

R•  (11) 

Next, assuming that domains are elongated for a time to before their 
breakup on the average, we have Rll ,,, Stc/x. In Ref. 26, on the basis of a 
perturbation calculation in Ref. 25, t c was estimated as 61n(kc/x)/F• 
where F l ~ (kB T/6~rlk~)/s is the inverse time scale of the fluctuations s 
homogeneous along the flow ( k x = 0 )  and varying in the perpendicular 
directions on the scale of 1/~. To make only crude estimates we neglect the 
logarithmic factor in to to obtain a domain size parallel to the flow, 

R H ~k4/~? ~ S l ~  -2.5 (12) 

The elongation ratio is given by 

RII/R• ~ (kr 4 ~ S2/(3VgETr T] 2 (13) 

We must say that the relation tc oc I /F i  is still a conjecture. 
To explain the streak in Fig. l, we next consider the scattered light 

intensity, which should be of the following anisotropic form Ik ~  
((Ac) 2) RIIR ~ f(Rllk~,  R• R• where f (x ,  y, z) is a scaling function 
and ((Ac) 2) is the average of the square of the concentration deviation at 
a point. In this paper we can assert only 

((Ac)2)  < eonst.(f~)2a-1 (Tr - T) (14) 

The right-hand side of Eq. (14) would be the square of the concentration 
difference if a planar macroscopic interface parallel to the flow would 
separate the two phases. The equality in Eq. (14) might not hold in view 
of the fact that the domain size R• perpendicular to the flow does not 
much exceed the interfacial width 1/~: in the steady state. 

It should be noted that Eq. (14) does lead to phase separation reversal 
in the low molecular weight case even in this form. 6 It occurs when 
T =  To(S) = T o ( 0 ) - A T  or St~ = [0.0832~ + --. ]-3~,,~ 100, where use has 
been made of Eq. (9). 

5 The kinetic coefficient (the diffusion constant multiplied by the concentration susceptibility) 
is proportional to l/kr in strong shear [14]. 

6 For example, the domain contribution to the turbidity vanishes as T--, To(S). 
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3. TURBULENT CRITICAL BINARY MIXTURES 

First we introduce Kolmogorov's theory for droplet sizes in turbulence 
[27 29]. We neglect gravity effects and the density difference between 
fluids inside and fluids outside droplets. Then there are two characteristic 
cases, R > 1/k d and R < 1/kd, where k d = L o 1R3e/4 is the Kolmogorov cutoff 
wave number, Lo being the size of the largest eddies and Re being the 
Reynolds number. 

(i) In the inertial range R > 1/kd, he obtained the characteristic size 
R by equating the capillary pressure 0./R and the difference of the dynamic 
pressures, Ap, exerted on opposite sides of droplets. His scaling theory of 
turbulence then shows Ap  ~ p u  R,2 where uR = (eoR) 1/3 is the characteristic 
velocity of eddies with size R, e o being the energy dissipation rate per unit 
mass. This is based on the picture that eddies with size R should deform 
the interface most dominantly. Thus, 

R ,~ (0/10) 3/5 /~0 2/5 ~ (/)0.//12)3/5 k d , / s  (15) 

(ii) In the dissipative range R < l / k a ,  however, he erroneously 
obtained R ~ (p0./tl2) ~/3 k d  4/3 from the balance 0./R 2 puR, with uR ~ SdR, 
Sd = (q/p) k2d being the typical shear rate in the dissipative range. It should 
be noted that the Reynolds number associated with such a small droplet 
is smaller than 1 from R ( R S d ) / ( t l / p ) ~ ( k a R ) 2 ~  1. Then, 0./R must be 
balanced with the shear stress qSd, SO that 

R ~ a/rlSd (16) 

The two equations, (15) and (16), are continuously connected at R ~ 1/kd, 
which holds for 0" ~ (q2/p) kd. We have Eq. (16) for 0" < (tl2/p) kd, which is 
eventually satisfied near the critical point since a oc (To - T )  2v. We may call 
the case of Eq. (16) the capillary regime in turbulence. 

For critical binary mixtures Ruiz and Nelson [30] first studied 
transient mixing processes, although the predicted effect was not supported 
by a subsequent experiment [31]. Afterward, experiments in Pitsburgh 
have been focused on light scattering from continuously stirred critical 
binary mixtures at the critical composition [-32, 33]. In such a case stirring 
suppresses the growth of domains, resulting in a dynamical stationary state 
as in the laminar shear case. 

The picture of the phenomena is as follows [34]. The characteristic 
concentration fluctuations have sizes smaller than that of the smallest 
eddies (~  1/kd) and they are strained by random shear which may be regar- 
ded as spatially homogeneous. The straining is most effectively caused by 
the smallest eddies with shear Sd = (q/p)k~.  The turnover time of these 
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eddies is of the order ta= lISa and this time is also the duration time 
during which the concentration fluctuations are acted by the eddies. 

On the basis of this picture, Ref. 34 used an approximation scheme 
devised by Kraichnan, who developed a theory for the diffusion of a 
passive scalar quantity in the dissipative range [-35]. To calculate the two- 
point correlation function Ik(t ) = <]Ck(t)]2 >, he approximated the velocity 
gradient tensor {Sui/Sxj} as a white noise independent of space. Then Ik(t) 
obeys 

8t Ik(t) = B + 4k Ik(t) + Xk(t)  (17) 

where B is of the order Sd from Kolmogorov's scaling theory and 
X, ( t )  = - 2 D k 2 I k ( t )  in Kraichnan's case. In the case of unstable fluids Xk(t)  
was set equal to the time derivative in Kawasaki and Ohta's equation [6], 
which takes into account the hydrodynamic interaction within Langer and 
co-workers' scheme [36]. 
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Fig. 3. The maximum S(0)= ~210 and the wave number qw = ~kw 
versus 1/B* from the theory [34]. 
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The theoretical results are as follows. As t ~  oe, Ik(t) tends to a 
stationary intensity Ik, which has the following features. 

(i) Ik is peaked at k = 0  (no spinodal ring). In Fig. 3 the dimen- 
sionless intensity S ( 0 ) =  ~ - 2 I  o for k ~ 0  is shown as a function of the 
inverse of a dimensionless shear defined by 

B* = t c B ~  ( 67ztl~3/kB T) S d (18) 

(ii) We also plot the dimensionless width qw={kw versus 1/B*, 
where kw is defined by Ikw = }Io. The behavior is very analogous to that of 
the dimensionless peak wave number qm = ~k~ versus ~ = t/tr in the normal 
spinodal decomposition process [3, 4]. Our model given by Eq. (17) thus 
indicates that the spinodal decomposition is stopped at a time of the order 
t r  USa. The effective exponent ~ =  d(ln qm)/d(ln B*) changes from 1 
to 0.7 with increasing I/B*. However, the capillary regime, in which 
q~,~B* [see Eq. (16)], cannot be reached as long as our scheme is based 
on Kawasaki  and Ohta 's  approximation. 7 We naturally expect that our 
scheme is applicable only for 1/B* < 100 and the crossover to the capillary 
regime should occur for 1/B* > 100. 

7 Their theory does not take into account the breakup mechanism of domains. 
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Next we show data in Ref. 33. In Fig. 4 experimental values for 
Io = ~2(0) and kw = ~ lqw are displayed as functions of T -  To. To interpret 
the data within our theoretical scheme let us set qw~ (B*) r to obtain 
k w ~ S ~ ( T c _ T ) ( l  3~)v. For instance, at T ~ - T = 2 0 m K ,  Fig. 4 shows 
d( lnkw) /d[ ln (T~-T)]  ,-- -0 .5 ,  which then suggests ~b~0.6 from Eq. (19). 
Obviously in the experiment the quench depth was not so deep and the 
capillary regime was not reached. In Fig. 5 the scaled intensity F(k/kw)= 
Ik/Io is shown for some temperatures. The agreement with the theoretical 
curve at B * =  0.1 is remarkable. 8 

The theory of Ref. 34 and also the experiment suggest that there is no 
sharp phase transition under stirring, while some authors expected a criti- 
cal point [37]. In the laminar shear case, on the contrary, the intensity in 
the disordered phase given by Eq. (8) shows that a critical point T =  To(S) 
still exists, although the critical divergence is much weakened due to the 
term proportional  to Ikx[ 2Is in Ik. 

8 The scaling function F(x) still depends on B* in our model, although the dependence is 
rather weak. 
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4. N U C L E A T I O N  IN F L O W  WITH WEAK SHEAR 

Let us supercool a fluid mixture at the off-critical condition in the 
presence of flow field. Droplets must be torn when the capillary pressure 
(Ha~R) is much less than the shear stress qS [17, 18]. This results in a 
upper limit of the droplet size, R* ~ a/qS. Noticeable droplets can emerge 
only when the critical radius ro(,,~/(~) is smaller than R*, ~b being the 
volume fraction much less than 1. This condition is rewritten as St~ < (J ~ 1. 
Our arguments are applicable also to stirred fluids if S is replaced by the 
maximum shear Sd. 

Another interesting aspect is that droplets coagulate in shear flow. Let 
us assume an initial distribution of an appreciable number of droplets 
greater than ro. To a droplet with the typical radius R, nuR 2 doplets are 
approaching per unit time by the relative convective motion, where 
n ~ ~/R 3 is the doplet density and u ~ SR is the relative velocity. Thus, n 
decreases by the coagulation as 

\at/(~n~c~ - ( n u R 2 ) n ~  - S ( m  (19) 

Therefore the droplet density (or size) will decrease (or increase) exponen- 
tially with a rate of the order S~b. The saturation will then occur for 
R ~ R*, where there will be a dynamical balance between the breakup and 
the coagulation. The evolution of the droplet distribution can be studied 
more precisely by setting up a Smoluchowski equation [38, 39, 29]. The 
final droplet distribution will be sharply peaked at R = R*. On the other 
hand, in the usual case without shear, anomalous supercooling has been 
observed as T ~ Tc [4, 5 ]. Namely, emergence of appreciable droplets can 
be very slow as T ~  T c even if ( T c x - T ) / ( T o - T c x )  much exceeds the 
classical cloud point value of order 0.15, where Tcx is the temperature on 
the coexistence curve for a given concentration. Interestingly, in the 
presence of flow, the flow-induced aggregation eventually dominates over 
the diffusion or Lifshitz-Slyozov process even for very low shear in a time 
of the order 1/SfD. It is worth trying to observe competition of these two 
mechanisms at very low shear. 

It is also of interest to investigate how shear can affect the birth 
process of critical droplets [4].  If such an effect exists, the cloud point itself 
will become dependent on the shear. However, no definite conclution can 
be made on this aspect at present because of the lack of detailed informa- 
tion how localized thermal fluctuations without distinct contrast between 
the two phases grow up to a critical droplet with a sharp interface. 

In the case of laminar shear light scattering can also give information 
on anisotropic shapes of droplets, which are expected to be nearly 
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spheroids [ 17 18]. In the case of stirring there is no preferred direction and 
scattering is isotropic, but droplets should be strongly distorted from 
spheres. 

5. PROPOSAL OF CRITICAL RHEOLOGY 

In Ref. 40 the shear viscosity was predicted to increase considerably 
due to domains in critical fluids quenched into the unstable or metastable 
region. This effect should be detectable if the viscosity measurement is 
carried out in the course of spinodal decomposition before the system is 
macroscopically phase-separated. Let us consider a tortionally oscillating 
cylinder. Spinodal decomposition under shear should occur in a boundary 
layer with thickness (2t//p09) m next to the cylinder wall. Here our results 
in Section 3 can be used if the oscillating frequency 09 is much less than the 
typical shear S in the layer. Domains near the critical point are so easily 
broken into small fragments that the domain structure in the layer should 
be kept independent of the time after quenching. We consider the excess 
viscosity At/in the low-frequency limit 09 ,~ S in the following limiting cases. 

(i) In the capillary regime, given by Eqs. (3) and (4), the charac- 
teristic domain size is given by R ,,~ a/t/S. Since domains are continuously 
elongated, a surface energy of order aR 2 is supplied to each domain from 
the outside on the time scale of 1IS. This energy is eventually dissipated 
into heat at breakup, the dissipation time being RZ/( t / /p )~  Re~S< 1/S. The 
resultant extra dissipation gives rise to a viscosity increase At/ determined 
by (A t / )S  2,.~ ((~a/R)S,  where (~a/R is the surface energy density, r being 
the volume fraction. Thus, 

At//t/~ ~b (20) 

where t/ is the viscosity in the absence of domains (that in the one-phase 
state with the same T o -  T). This relation is well-known for dilute systems 
of emulsions. However, in our case domains are nonlinearly deformed, 
whereas in usual emulsion systems Eq. (20) holds only for infinitesimal 
deformations. (ii) In the inertia regime given by Eq. (5) we limit ourselves 
to ~b= �89 Since the characteristic velocity fluctuation is of the order 
S R  ~ (~rS/p) 1/3, we find 

At~/t~ ~ Re ~ (p02/~38)1/3 ~ 1 (21) 

(iii) In the the strong shear case At~ should rapidly decrease as 
domains are elongated and the contrast between the two phases becomes 
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ill defined. In Ref. 40, assuming the equality in Eq. (14), we predicted the 
following non-Newtonian effect: 

Aq/~1 ~ (J(St~) 4/3v (22) 

On the other hand, if ~ > S,  Aq should strongly depend on o~ even 
when cot: ~ 1. A large normal stress effect can also be expected in the 
presence of domains [-40]. 

6. CONCLUDING REMARKS 

The topics in this paper may be claimed to constitute one of actively 
evolving fields in nonequilibrium statistical physics. Our consideration 
should be extended to more complex fluid systems with domain structures 
such as microemulsious, liquid crystals, entangled polymers, block 
copolymers, etc. 
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